Reference Documentation¶
This is where to find auto-generated Python API docs.
pydantic_kedro.PydanticAutoDataSet
¶
Bases: AbstractDataSet[BaseModel, BaseModel]
Dataset for self-describing Pydantic models.
This allows fields with arbitrary types. When loading, it automatically detects the dataset type. When saving, it saves 'pure' models as YAML datasets, and arbitrary models as Zip datasets. This can be changed in the dataset object creation.
Example:¶
1 2 3 4 5 6 7 8 9 |
|
Example:¶
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
Source code in src/pydantic_kedro/datasets/auto.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
pydantic_kedro.ArbModel
¶
Bases: BaseModel
Base Pydantic Model with arbitrary types allowed in the config.
This also supports type hints for pydantic_kedro
in the configuration:
kedro_map
, which maps a type to a dataset constructor to use.kedro_default
, which specifies the default dataset type to use (kedro.extras.datasets.pickle.PickleDataSet)
These are pseudo-inherited, see config-inheritence.
You do not actually need to inherit from ArbModel
for this to work, however it can help with
type completion in your IDE.
Source code in src/pydantic_kedro/models.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
pydantic_kedro.load_model(uri: str, supercls: Type[T] = BaseModel) -> T
¶
Load a Pydantic model from a given URI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
uri |
str
|
The path or URI to load the model from. |
required |
supercls |
type
|
Ensure that the loaded model is of this type. By default, this is just BaseModel. |
BaseModel
|
Source code in src/pydantic_kedro/utils.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|
pydantic_kedro.save_model(model: BaseModel, uri: str, *, format: Literal['auto', 'zip', 'folder', 'yaml', 'json'] = 'auto') -> None
¶
Save a Pydantic model to a given URI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
BaseModel
|
Pydantic model to save. This can be 'pure' (JSON-safe) or 'arbitrary'. |
required |
uri |
str
|
The path or URI to save the model to. |
required |
format |
Literal['auto', 'zip', 'folder', 'yaml', 'json']
|
The dataset format to use. "auto" will use PydanticAutoDataSet. |
"auto"
|
Source code in src/pydantic_kedro/utils.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
pydantic_kedro.PydanticJsonDataSet
¶
Bases: AbstractDataSet[BaseModel, BaseModel]
Dataset for saving/loading Pydantic models, based on JSON.
Please note that the Pydantic model must be JSON-serializable.
That means the fields are "pure" Pydantic fields,
or you have added json_encoders
to the model config.
Example:¶
1 2 3 4 5 6 |
|
Source code in src/pydantic_kedro/datasets/json.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
filepath: str
property
¶
File path name.
pydantic_kedro.PydanticYamlDataSet
¶
Bases: AbstractDataSet[BaseModel, BaseModel]
Dataset for saving/loading Pydantic models, based on YAML.
Please note that the Pydantic model must be JSON-serializable.
That means the fields are "pure" Pydantic fields,
or you have added json_encoders
to the model config.
Example:¶
1 2 3 4 5 6 |
|
Source code in src/pydantic_kedro/datasets/yaml.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
filepath: str
property
¶
File path name.
pydantic_kedro.PydanticFolderDataSet
¶
Bases: AbstractDataSet[BaseModel, BaseModel]
Dataset for saving/loading Pydantic models, based on saving sub-datasets in a folder.
This allows fields with arbitrary types.
Example:¶
1 2 3 4 5 6 |
|
Source code in src/pydantic_kedro/datasets/folder.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|
filepath: str
property
¶
File path name.
pydantic_kedro.PydanticZipDataSet
¶
Bases: AbstractDataSet[BaseModel, BaseModel]
Dataset for saving/loading Pydantic models, based on saving sub-datasets in a ZIP file.
This allows fields with arbitrary types.
Example:¶
1 2 3 4 5 6 |
|
Source code in src/pydantic_kedro/datasets/zip.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
filepath: str
property
¶
File path name.